Dosimetric characteristics of a new unit for electronic skin brachytherapy
نویسندگان
چکیده
PURPOSE Brachytherapy with radioactive high dose rate (HDR) (192)Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya(®) Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. MATERIAL AND METHODS Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). RESULTS Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. CONCLUSIONS The new Esteya(®) Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy.
منابع مشابه
Determination of Dosimetric Characteristics of IrSeed 125I Brachytherapy Source
Introduction Low dose rate brachytherapy sources have been widely used for interstitial implants in tumor sites, particularly in prostate. Dosimetric characteristics of a new IrSeed 125I brachytherapy source have been determined using the LiF thermoluminescent dosimeter (TLD) chips. Materials and Methods Dose rate constant, radial dose function, and anisotropy function around the IrSeed 125I so...
متن کاملDetermination of Dosimetric characteristics of a New 192Ir-PDR Brachytherapy Source According to AAPM TG- 43 Protocol using Monte Carlo simulation technique
Introduction: 192Ir is one of the important sources frequently used in brachytherapy. Up to now, a lot of commercial models of this source have been made which Ir-192 has been recently added to them. The aim of the present study is to determine the dosimetric parameters of this new source model based on the recommendations of TG-43(U1) protocol using Monte Carlo simulation tech...
متن کاملDosimetric Improvements in Balloon Based Brachytherapy Using the Contura® Multi-Lumen Balloon (MLB) Catheter to Deliver Accelerated Partial Breast Irradiation
PURPOSE Preliminary dosimetric findings in patients managed with the Contura® Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional phase IV registry trial were reviewed. MATERIAL AND METHODS CT-based 3D planning with dose optimization was performed for all patients. For the study, new ideal dosimetric goals w...
متن کاملDosimetric characteristics of 137Cs sources used in after loading Selectron system by Monte Carlo method
Background: For an effective treatment planning in brachytherapy, it is necessary to know the accurate source dosimetric information such as air kerma strength, exposure rate constant, dose rate constant and redial dose distribution. The usual method to determine these factors is thermo luminescent dosimeter (TLD) dosimetry. Nowadays, another more accurate method is known to be the Monte Carlo ...
متن کاملIndependent assessment of source transit time for the BEBIG SagiNova® high dose rate brachytherapy afterloader
Introduction: The dwell time and transit time components contribute to the overall delivered dose to patients in high dose rate (HDR) brachytherapy treatments. The transit time results from source entry and exit as well as source movements between dwell positions. It depends on various parameters such as the source speed profile, source indexer distance to dwell position, and ...
متن کامل